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Adaptive Signal Detection in Auto-Regressive Interference 

with Gaussian Spectrum 

 
 
M. R. Moniri*, M. M. Nayebi** and A. Sheikhi*** 
 
 
 

Abstract: A detector for the case of a radar target with known Doppler and unknown 
complex amplitude in complex Gaussian noise with unknown parameters has been derived. 
The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian 
autocorrelation function which is a suitable model for ground clutter in most scenarios 
involving airborne radars. The detector estimates the unknown parameters by Maximum 
Likelihood (ML) estimation for the use in the Generalized Likelihood Ratio Test (GLRT). 
By computer simulations, it has been shown that for large data records, this detector is 
Constant False Alarm Rate (CFAR) with respect to AR model driving noise variance. Also, 
measurements show the detector excellent performance in a practical setting. The detector’s 
performance in various simulated and actual conditions and the result of comparison with 
Kelly’s GLR and AR-GLR detectors are also presented. 
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1 Introduction 1 

In a non-stationary and/or non-homogeneous 
interference environment of unknown statistics, 
adaptive detection algorithms, such as Sample Matrix 
Inversion (SMI) [1] and Kelly’s Generalized Likelihood 
Ratio (GLR) algorithms [2], can suffer severe detection 
performance degradation, simply owing to the lack of 
sufficient amount of independent and identically 
distributed (iid) data from which the system can learn 
(estimate) the statistics of the environment. In [3-5] 
multiband SMI and GLR algorithms are proposed and 
have been shown to deliver a significantly improved 
detection performance as compared with corresponding 
single-band algorithms. These multiband algorithms are 
quite general in the sense that they do not assume that 
the interference covariance matrix has any special 
structure in addition to the Hermitian. To further 
improve the detection performance, one may exploit the 
structural information of the interference covariance. In 
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many situations of practical interest, interference data 
process can be modeled by an Auto-Regressive (AR) 
process. Sheikhi [6] and Kay [7-8] have exploited AR 
modeling for the interference in their GLR algorithms. 

Sheikhi named his detector AR-GLR. Also, in [9] 
and [16] the extended AR-GLR for a multichannel 
application has been presented by Moniri. But if one can 
model the interference in a more precise way, it is 
expected to have a detector with a better performance 
based on this model. 

So, this work is motivated by a desire to detect the 
radar target of unknown amplitude and known Doppler 
in additive AR noise, with Gaussian correlation matrix, 
based on GLR test. As it will be shown by computer 
simulations, our detector has better performance as 
compared with Kelly’s GLR and AR-GLR detectors. 
In Section 2, we introduce notations and discuss the 
interference model. The detection problem is defined 
and the likelihood ratio is developed in Section 3. 
Simulation results and the detector performance against 
measured data are presented in Section 4. And finally, 
the conclusions are given at the end of the paper. 
 
2 Preliminaries 

In this section, we introduce notations and 
terminologies which are utilized throughout this work. 

Consider the discrete complex process y(k) received 
by a single-sensor pulsed radar system in which the 
detection problem is given by: 
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where y(k) is a complex N -dimensional vector 
(corresponding to N-pulse train). y(0) denotes the 
primary data and for k = 1,2,…,K they are secondary 
data which are iid and include no targets. S is also a 
complex N- dimensional vector which denotes the target 
signal and is given by: 
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where T stands for the transpose. this vector 
corresponds to a target whose Doppler is Ω, which is 
assumed to be known. α is an unknown complex 
amplitude of the reflected signal from the target. n(k) is 
also a complex N- dimensional vector denoting the 
clutter 
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which is assumed to be an AR(M,a,σ2

u), AR process of 
order M and parameters a and σ2

u, given by: 
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where ui is zero-mean discrete complex white Gaussian 
noise with variance σ2

u, and a = [a1a2…aM]
T is the AR 

parameter vector (the AR model is proposed specially 
for characterization of ground clutter, as in an airborne 
system, which is our primary interest). We assume that 
a and σu

2 are also unknown but a can be expressed in 
terms of other unknown parameters which are derived 
from correlation function shape. 

In this work, at first we fix the form of the 
correlation function and then apply the GLR theory on 
unknown parameters. We consider the correlation 
function R(1) which is defined as 
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This means a similar correlation function for 

interference in both primary and secondary data 

samples. We now consider modeling R(l) with 
functional forms that will enable us to obtain a variety 
of spectral distributions. We express this function in the 
form of: 
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R l K f , l l exp j l= λ − θ  (6) 

 
The quantity λ is defined as a temporal correlation 

parameter, which provides a measure for the correlation 
between discrete samples of the process. The function 
fn(●) is selected to specify the shape of the correlation 
function magnitude; l0 is the lag value at which the 
corresponding real function fn(●) has a peak value of 
unity. θn(●) show the Doppler shifting caused by  
platform motion. In this paper, as Doppler shifting has 
been assumed to be known, we have let θn(●)=0. For the 
temporal correlation functions l0=0 and the constant Kn 
is a real, normalizing coefficient. In [10], the special 
cases of Gaussian, exponential and sinc shaped 
correlation function are considered. Here we use 
Gaussian form which will be shown in section 4 to be a 
suitable model for our measurements. So, we consider 
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so that Eq. (6) becomes 
 

( ) ( )
2l2R l = σ λ  (8) 

where σ2 is the variance of the zero mean process and λ 
is a real parameter such that 0 ≤ λ ≤ l. 

Now, the Yule-Walker equation can be used to 
determine the AR coefficients of the process, as could 
be derived from (4) 
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The AR power spectral density (psd) which would 

result from determined AR coefficients provides a fit to 
the desired spectrum. Alternatively, when these 
coefficients are used in (4), we are able to generate 
processes which provide a fit to the desired spectrum in 
a MMSE sense. In this work, however, we are 
concerned with parameter estimation. So Eqs. (8) and 
(9) give us a and σ2 in terms of λ and σu

2 and then we 
use a(λ) = [a1(λ) a2(λ)…aM(λ)]

T instead of a. 
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As an example, for a second order (M = 2) AR 
process a(λ) is given by: 
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and 
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3 The Detection Problem 

In this section, we discuss the detection problem 
addressed in this paper which is expressed as Eq. (1). 
We assume that α, λ and σu

2 are unknown but fixed 
constants which are the same under either hypothesis. 
The GLR theory can then be applied here. The resulting 
detector compares the generalized likelihood ratio, 
LGLR, with a threshold η. 
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where fv(y(0),y(1),…y(K)|Hi,σil

2,λi,α) is a conditional 
Probability Density Function (PDF) under hypothesis 
Hi, and λi, σu

2 and α are the maximum likelihood 
estimates of λ, σu

2 and α, respectively, under hypothesis 
Hi. Since n(k) is assumed to be Gaussian, the 
conditional PDF of y(k) will be also Gaussian. It can be 
shown that for AR processes with poles not too close to 
the unit circle, we have [11] 
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where x0,n = yo,n – αsn and xk,n = yk,n for k = 1,2,…,K, 
and for f0 we have 
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As shown in the Appendix, by using Eqs. (13) and 

(14) in Eq. (12), the detector is derived and given by: 
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where 
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in which Y and u are defined as: 
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and λ0 is the root of Eq. (18) in the interval [0   1]: 
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which minimizes | u – Y a (λ) |2.  

On the other hand 
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in which Ý and ú are defined as 
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Yi and ui are defined in Eq. (17) and H is defined as 
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which is the projection matrix of the null space of φ 
where 
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and λ1 is the root of Eq. (23) in the interval [0    1]: 
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It is notable that in practical applications, an analytic 

solution for either Eq. (18) or (23) to obtain λ0 or λ1 can 
be very difficult. This can be resolved by using an 
approximate minimization of |u – Ya (λ)|2 and  
|ú –Υa (λ)|2 in a grid search. Evidently, the performance 
of the system will be better when the step between pre 
assumed parameter values is less. The highest value of 
loss occurs when the actual temporal correlation 
parameter (λ) is in the middle of two pre-assumed 
values. 

Since this detector assumes that n(k) is an AR(M) 
process with Gaussian correlation function and the 
target has a Doppler of Ω, we call it Auto-Regressive, 
Gaussian correlation GLR (AR-GC-GLR(M,Ω))). The 
detector structure is shown in Fig. 1. An estimate of a 
pre-whitener is formed under both hypotheses, but 
under hypothesis H1 the data are first projected on the 
null space of the vector φ. The power of the whitened 
time series is then estimated (using the covariance 
method in AR parameter estimation), transformed by a 
logarithmic operator and finally their difference is 
compared to a threshold. 

It is also Notable that if the target model is 
generalized so that the target Doppler is assumed to be 
unknown, the likelihood ratio obtained in Eq. (15) must 
next be maximized over Ω. This maximization can not 
be carried out explicitly, but the standard technique is to 
approximate it by evaluating the test statistic for a 
discrete set of target Dopplers, forming a detector bank, 
and declaring target presence if any detector exceeds the 
threshold. 
 
4 Detection Results Using Computer Simulations 

and Clutter Measurements 

The performance of AR-GC-GLR detector for finite 
data length is evaluated through computer simulation. 
The case given by Eq. (1) is considered, where n(k) is 
an AR process of order M with parameters a(λ) and σu

2. 
Similar [2, 7, 13], in these simulations signal to 
interference  ratio (SINR) is defined as: 
 

H 12 2SINR d−= α = α
N

S R S  (24) 

 
where RN is the actual correlation matrix of n(k) and 
computed using λ and σu

2. In all of the simulations, the 

order of process (M) is 2, σu
2 = 2 and |α| is adjusted to 

yield the given SINR. We used 105 samples in each 
simulation, So the curves are acceptable only for  
Pfa > 10

-3. Fig. 2 demonstrates probability of detection 
versus probability of false alarm for signal to 
interference ratios. As could be expected, for a given Pfa 
increasing SINR the performance of the detector (i.e. 
Pd) is improved. 

Performance improvement by increasing the 
observation length is demonstrated in Fig. 3. 

The dependence of the detection performance to 
secondary data is depicted in Fig. 4 where the 
performance is improved as more secondary data is 
used. 

Fig. 5 shows the improvement of the detection 
performance by increasing the temporal correlation 
parameter (1) that is expected because of the chance of 
the detector to have a better estimation of the clutter 
behaviors when we have more correlation in our 
samples. 

In fig. 6 the CFAR property of AR-GC-GLR with 
respect to su

2 for finite data lengths is investigated. In 
this simulation AR-GC-GLR (2,1) with h = 4 is used. 
n(0) is AR(2) process with 1=.9 and no secondary data 
is used. Pfa against su

2 is shown for N = 20, N = 50 and 
N = 200. In all three cases Pfa is approximately constant 
hence the detector is CFAR. 

Fig. 7 demonstrates a comparison with Kelly’s GLR 
and AR-GLR detectors. We can see high superiority of 
AR-GC-GLR. This superiority is the result of using a 
priori knowledge of being autoregressive with a 
Gaussian correlation function in clutter modeling. But 
Kelly’s GLR and AR-GLR don’t use this information so 
they have a poor performance as compared with AR-
GC-GLR. 

The AR-GC-GLR performance in comparison with 
AR-GLR against measured clutters is depicted in Fig. 8. 
An excellent performance for AR-GC-GLR detector 
which is the result of our suitable model and its 
compatibility to the real clutter conditions can be seen 
in this figure. As it can be seen, against a fix clutter 
background because of the real clutter model shape 
assumption, the detector has better behaviors. It is 
notable that in this condition the temporal correlation 
parameter is very close to 1. 

The measured clutter is a result of several 
measurements on the clutter by an X band radar with the 
pulse duration of 300ns for 15000 samples in each 
experiment [14]. As it can be seen, even with no 
secondary data, the detector has acceptable performance 
especially against stationary clutters. 
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Fig. 1 Block diagram of AR-GC-GLR. 
 

 
Fig. 2 Probability of detection versus probability of false alarm in various SINR conditions (a: SINR=10 dB, b: SINR=7 dB, c: 
SINR=5 dB). 
 

 
Fig. 3 Probability of detection versus probability of false alarm for three different values for the number of received radar pulses (a: 
N=20, b: N=10, c: N=5). 
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Fig. 4 Probability of detection versus probability of false alarm for three different values for the numbers of secondary data  
(a: K = 20, b: K = 3, c: K = 0). 
 

 
Fig. 5 Probability of detection versus probability of false alarm for various temporal correlation parameter (a: λ = 0.9, b: λ = 0.7,  
c: λ = 0.5). 
 

 
Fig. 6 Pfa against σu

2 (a: N = 20, b: N = 50, c: N = 100). 
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(a) λ = 9 

 

 
 

(b) λ = 5 
Fig. 7 Comparison with Kelly’s GLR and AR-GLR detector. 
 

 
(a) Rain clutter, Range: 320 meters 
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(b) Ground with sparse plant coverage, Range: 2750 meters 

Fig. 8 Comparison with AR-GLR against measured clutters. 
 
5 Conclusion 

In this paper, we have considered a detector for the 
case of a radar target with known Doppler and unknown 
complex amplitude in complex Gaussian noise with 
unknown parameters. We have applied GLR theory in 
this problem and we have used a model-based approach 
where the signal form is known and colored additive 
interference is characterized by AR Gaussian process 
with Gaussian spectrum which is a suitable model for 
ground clutter in most scenarios involving airborne 
radars. Furthermore, testing the detector behavior with 
computer simulated and also practically measured 
clutter show its superiority in comparison with Kelly’s 
GLR and AR-GLR detectors. It has been shown that for 
a moderate size of data record the AR-GC-GLR is 
approximately CFAR with respect to AR model driving 
noise variance. 

The AR-GC-GLR detector doesn’t need to have a 
separate set of data vectors (secondary data) for 
adaptation and can estimate the statistics of the 
environment using only the data under test. This 
property is very important in non-homogeneous or 
rapidly varying environments such as airborne radars in 
which enough secondary data is not available. 
 
Appendix 

Derivation of AR-GC-GLR Detector: 
Under H0, the joint PDF of received signals y(k) is 

given by Eq. (14) which can be written as 
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By the definition of the GLR, we should maximize 
f0 over the unknown parameter 1.Maximizing Eq. (25) 
over 1 yields to Eq. (18). Next the maximization of f0 
over the unknown parameter su

2 has been solved in ([15] 
p. 56) and the maximum likelihood estimates of λ and 
su

2 under H0 are given by Eqs. (16) and (18). Using Eq. 
(16) in Eq. (25) yields 
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0u
σ̂  is given by (17).  

Under H1, the joint PDF of received signals is given 
by Eq. (13). To obtain the maximum likelihood 
estimates of the unknown parameters λ, σu

2 and α under 
H1, we first maximize f1 over α which is equivalent to 
minimize the operand of exp(●), i.e. 
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We define: 
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and 
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where φ is defined in Eq. (22). Using these 

definitions, we have 
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Now, to find the minimum value of Eq. (33) to use 

in Eq. (27), we first minimize Eq. (33) which can be 
considered as a least square problem and its solution is 
given by: 
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e e

e

 
(34) 

 
Now to maximize f1 over a(1) and su

2, we rewrite 
Eq. (34) as: 
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(35) 

We see that H is not a function of a(1). On the other 
hand, e = u0 – Y0a (1), so 
 

( )( ) ( )( )HB = − λ − λ
0 0 0 0
u Y a H u Y a  (36) 

 
Since H is an idempotent matrix, we have: 

 

( )( ) ( )( )
( )( ) ( )( )

H 2

H

B = − λ − λ

′ ′ ′ ′= − λ − λ

0 0 0 0

0 0 0 0

u Y a H u Y a

u Y a u Y a

 (37) 

 
where Y0¢ and u0¢ are defined in Eq. (20). So, to find 
the maximum likelihood estimation of a(1) and σu

2 
under H1, we have to solve the following maximization 
problem: 
 

( )
( )( ) ( )( )2

u

K 1

H
2N 2Na , uu

1 1max exp H

+

λ σ

                    

′ ′ ′ ′− − λ − λ
σπ σ
u Y a u Y a

 

 
where Y¢ and u¢ are defined in Eq. (20). This is the 
same problem as Eqs. (25) and (26) if we replace Y by 
Y¢ and u by u¢. So using the solution of Eqs. (25) and 
(26), we arrive at Eqs. (19) and (23) and we have: 
 

{ } ( ) ( )( )
2

u

2

1 1u
, ,

ˆmax ln f N K 1 ln 1
σ λ α

≅− + σ +  (38) 

 
where su

2 is given by Eq. (19). Finally, by using Eqs. 
(26) and (38), we obtain the AR-GC-GLR detector 
given by Eq. (15). 
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